- Fully Integrated V_{cc} and V_{pp} Switching for Dual-Slot PC CardTM Interface
- $\mathbf{P}^{2} \mathbf{C}^{\text {TM }}$ 3-Lead Serial Interface Compatible With CardBus ${ }^{\text {™ }}$ Controllers
- 3.3 V Low-Voltage Mode
- Meets PC Card Standards
- RESET for System Initialization of PC Cards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short Circuit and Thermal Protection
- 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP)
- Compatible With 3.3-V, 5-V and 12-V PC Cards
- Low rDS(on) (140-m Ω 5-V VCC Switch; 110-m Ω $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Switch)
- Break-Before-Make Switching

description

The TPS2206 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit (IC), using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or $12-\mathrm{V}$ card power by means of the $\mathrm{P}^{2} \mathrm{C}$ (PCMCIA Peripheral-Control) Texas Instruments nonproprietary serial interface. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability.

The TPS2206 is backward compatible with the TPS2202 and TPS2202A, except that there is no $V_{D D}$ connection. Bias current is derived from either the 3.3-V input pin or the $5-\mathrm{V}$ input pin. The TPS2206 also eliminates the APWR_GOOD and BPWR_GOOD pins of the TPS2202 and TPS2202A.

DB OR DF PACKAGE
(TOP VIEW)

DAP PACKAGE (TOP VIEW)

NC - No internal connection

The TPS2206 features a 3.3-V low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for 5 V . This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS and $\mathrm{P}^{2} \mathrm{C}$ are trademarks of Texas Instruments.
PC Card and CardBus are trademarks of PCMCIA (Personal Computer Memory Card International Association).

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

description (continued)

The TPS2206 incorporates a reset function, selectable by one of two inputs, to help alleviate system errors. The reset function enables PC Card initialization concurrent with host platform initialization, allowing a system reset. Reset is accomplished by grounding the V_{CC} and V_{pp} (flash-memory programming voltage) outputs, which discharges residual card voltage.
End equipment for the TPS2206 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras and bar-code scanners.

AVAILABLE OPTIONS

$\mathbf{T A}_{\mathbf{A}}$	PACKAGED DEVICES			CHIP FORM (Y)
	PLASTIC SMALL OUTLINE (DB)	PLASTIC SMALL OUTLINE (DF)	TSSOP (DAP)	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS2206IDB	TPS2206IDFR	TPS2206IDAPR	TPS2206Y

The DB package is available taped and reeled (add an R suffix to the device type, e.g., TPS2206IDBR). The DF and DAP packages are only available taped and reeled, indicated by the R suffix.
typical PC card power-distribution application

TPS2206Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2206. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	DB, DF	DAP		
3.3 V	15, 16, 17	16, 17, 18	1	3.3-V V_{CC} input for card power
5 V	1, 2, 30	1, 2, 32	1	$5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ input for card power and/or chip power
12V	7, 24	8, 25	1	$12-\mathrm{V} \mathrm{V}_{\text {pp }}$ input for card power
AVCC	9, 10, 11	10, 11, 12	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance to card
AVPP	8	9	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance to card
BVCC	20, 21, 22	21, 22, 23	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance
BVPP	23	24	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance
CLOCK	4	5	I	Logic-level clock for serial data word
DATA	3	4	I	Logic-level serial data word
GND	12	13		Ground
LATCH	5	6	1	Logic-level latch for serial data word
NC	$\begin{gathered} 13,19,25, \\ 26,27, \\ 28,29 \end{gathered}$	$\begin{gathered} 3,19,26, \\ 27,28,29, \\ 30,31 \end{gathered}$		No internal connection
$\overline{\mathrm{OC}}$	18	20	0	Logic-level overcurrent. $\overline{\mathrm{OC}}$ reports output that goes low when an overcurrent condition exists
RESET	6	7	I	Logic-level RESET input active high. Do not connect if terminal 14 is used.
$\overline{\text { RESET }}$	14	14	1	Logic-level $\overline{\mathrm{RESET}}$ input active low. Do not connect if terminal 6 is used.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE		$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DB		1024 mW	$8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	655 mW	532 mW
DF		1158 mW	$9.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	741 mW	602 mW
DAP	No backplane	1625 mW	$13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1040 mW	845 mW
	Backplane§	6044 mW	$48.36 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	3869 mW	3143 mW

\ddagger These devices are mounted on an FR4 board with no special thermal considerations.
§ 2-oz backplane with $2-\mathrm{oz}$ traces; $5.2-\mathrm{mm} \times 11$ - mm thermal pad with 6 -mil solder; $0.18-\mathrm{mm}$ diameter vias in a 3×6 array.
recommended operating conditions

		MIN	MAX	UNIT
	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
Input voltage range, V_{l}	$\mathrm{V}_{1(3.3 V)}$	0	5.25	V
	$\mathrm{V}_{\mathrm{l}(12 \mathrm{~V})}$	0	13.5	V
Output current	$\mathrm{O}(\mathrm{xVCC})$ at $25^{\circ} \mathrm{C}$		1	A
Output current	$1 \mathrm{O}(\mathrm{xVPP})$ at $25^{\circ} \mathrm{C}$		150	mA
Clock frequency		0	2.5	MHz
Operating virtual junctio		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted) dc characteristics

PARAMETER			TEST CONDITIONS	TPS2206			UNIT	
			MIN	TYP	MAX			
	Switch resistances \dagger	5 V to xVCC				103	140	$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{l}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$		69	110		
		3.3 V to xVCC	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0, \quad \mathrm{~V}_{\mathrm{I}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$		96	180		
		5 V to xVPP				6	Ω	
		3.3 V to xVPP				6		
		12 V to xVPP				1		
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	Clamp low voltage		I_{pp} at 10 mA			0.8	V	
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$	Clamp low voltage		I_{CC} at 10 mA			0.8	V	
IIkg	Leakage current	Ipp high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
		ICC high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10		
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
1	Input current	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVCC})}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}(\mathrm{AVPP})=\mathrm{V}_{\mathrm{O}}(\mathrm{BVPP})=12 \mathrm{~V} \\ & \hline \end{aligned}$		117	150	$\mu \mathrm{A}$	
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0, \\ \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVCC})}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{AVPP})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVPP})}=0 \end{aligned}$		131	150		
		Shutdown mode	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{BVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{AVPP})} \\ & =\mathrm{V}_{\mathrm{O}}(\mathrm{BVPP})=\mathrm{Hi}-\mathrm{Z} \end{aligned}$			1	$\mu \mathrm{A}$	
Ios	Short-circuit output-current limit	$\mathrm{IO}(\mathrm{xVCC})$	$\mathrm{T} J=85^{\circ} \mathrm{C},$ Output powered up into a short to GND	1		2.2	A	
		$1 \mathrm{O}(\mathrm{xVPP})$		120		400	mA	

\dagger Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
logic section

PARAMETER	TEST CONDITIONS	TPS2206	UNIT
		MIN MAX	
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
	$\mathrm{V}_{1(5 \mathrm{~V})=5 \mathrm{~V},} \mathrm{IO}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})-0.4}$	
Logic output high level	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})=0,} & \mathrm{I} \mathrm{O}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})=3.3 \mathrm{~V}} & \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{I}(3.3 \mathrm{~V})}{ }^{-0.4}$	V
Logic output low level	$\mathrm{I} \mathrm{O}=1 \mathrm{~mA}$	0.4	V

TPS2206

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER
SLVS138D - MAY 1996 - REVISED JANUARY 2001
switching characteristics $\dagger \ddagger$

PARAMETER		TEST CONDITIONS		TPS2206		UNIT		
		MIN TYP	MAX					
tr_{r}	Output rise time			$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		ms
		$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		5				
tf_{f}	Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10				
		V_{O} (xVPP)		14				
$t_{\text {pd }}$	Propagation delay (see Figure 1)	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	$\mathrm{t}_{\text {on }}$	4.4		ms		
			toff	18		ms		
		LATCH \uparrow to $\left.\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}\right)(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=5 \mathrm{~V}$	ton	6.5		ms		
			$\mathrm{t}_{\text {off }}$	20		ms		
		LATCH个 to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})(5 \mathrm{~V})$	ton	5.7		ms		
			toff	25		ms		
		LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=0$	ton	6.6		ms		
			toff	21		ms		

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{I}(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)
dc characteristics

PARAMETER			TEST CONDITIONS		TPS2206Y			UNIT		
			MIN	TYP	MAX					
	Switch resistances§	5 V to xVCC					103			$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$,	$\mathrm{V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	69					
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=0$,	$\mathrm{V}_{1}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$	96					
		5 V to xVPP			4.74			Ω		
		3.3 V to xVPP			4.74					
		12 V to xVPP			0.724					
V_{O} (xVPP)	Clamp low voltage		l_{pp} at 10 mA		0.275			V		
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$	Clamp low voltage		I_{CC} at 10 mA		0.275			V		
1 lkg	Leakage current	Ipp High-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1		$\mu \mathrm{A}$		
		ICC High-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1				
1	Input current	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}= \\ \mathrm{V}_{\mathrm{O}(\mathrm{AVPP})}=1 \\ \hline \end{array}$	$\begin{aligned} & B V C C)=5 \mathrm{~V}, \\ & 3 V P P)=12 \mathrm{~V} \end{aligned}$		117		$\mu \mathrm{A}$		
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=0, \\ & \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{O(A V C C)}= \\ & V_{O}(\text { AVPP }) \end{aligned}$	$\begin{aligned} & \mathrm{BVCC})=3.3 \mathrm{~V}, \\ & 3 \mathrm{VPP})=0 \end{aligned}$	131					

§ Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
switching characteristics $\dagger \ddagger$

PARAMETER		TEST CONDITIONS		TPS2206		UNIT		
		MIN TYP	MAX					
tr_{r}	Output rise time			$\mathrm{V}(\mathrm{xVCC})$		1.2		ms
		V_{O} (xVPP)		5				
t_{f}	Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10				
		$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		14				
$\mathrm{t}_{\text {pd }} \quad$ Propagation delay (see Figure 1)		LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	$\mathrm{t}_{\text {on }}$	4.4		ms		
		$t_{\text {off }}$	18		ms			
		LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	6.5		ms		
		$\mathrm{t}_{\text {off }}$	20		ms			
		LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$ (5 V)	t_{0}	5.7		ms		
		$\mathrm{t}_{\text {off }}$	25		ms			
		LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=0$	$\mathrm{t}_{\text {on }}$	6.6		ms		
		$\mathrm{t}_{\text {off }}$	21		ms			

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

LOAD CIRCUIT

VOLTAGE WAVEFORMS

Figure 1. Test Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Table of Timing Diagrams

	FIGURE
Serial-Interface Timing	2
xVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=5 \mathrm{~V}$	3
$x \mathrm{VCC}$ Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=5 \mathrm{~V}$	4
xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	5
xVCC Propagation Delay and Fall Time With 150- F L Load, $3.3-\mathrm{V}$ Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	6
xVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0$	7
xVCC Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	8
xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0$	9
xVCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0$	10
xVCC Propagation Delay and Rise Time With 1- F F Load, 5-V Switch	11
xVCC Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 5-V Switch	12
xVCC Propagation Delay and Rise Time With 150-uF Load, 5-V Switch	13
xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, $5-\mathrm{V}$ Switch	14
xVPP Propagation Delay and Rise Time With 1- F F Load, 12-V Switch	15
xVPP Propagation Delay and Fall Time With 1- F Load, 12-V Switch	16
xVPP Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 12-V Switch	17
xVPP Propagation Delay and Fall Time With 150-uF Load, 12-V Switch	18

NOTE A: Data is clocked in on the positive leading edge of the clock. The latch should occur before the next positive leading edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 2. Serial-Interface Timing

Figure 3. xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, $\left(\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}\right)$

Figure 5. xVCC Propagation Delay and Rise Time With $150-\mu$ F Load, $3.3-\mathrm{V}$ Switch,

$$
V_{l(5 \mathrm{~V})}=5 \mathrm{~V}
$$

Figure 4. xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, $\left(\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}\right)$

Figure 6. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 7. xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0$

Figure 9. xVCC Propagation Delay and Rise Time With $150-\mu$ F Load, 3.3-V Switch,

$$
V_{1(5 \mathrm{~V})}=0
$$

Figure 8. xVCC Propagation Delay and Fall Time With 1- H Load, 3.3-V Switch, $V_{1(5 \mathrm{~V})}=0$

Figure 10. xVCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch,

$$
V_{l(5 \mathrm{~V})}=0
$$

Figure 11. xVCC Propagation Delay and Rise Time With 1- μ F Load, 5-V Switch

Figure 13. xVCC Propagation Delay and Rise Time With 150-uF Load, 5-V Switch

Figure 12. xVCC Propagation Delay and Fall Time With 1- μ F Load, 5-V Switch

Figure 14. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, $5-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 15. xVPP Propagation Delay and Rise Time With $1-\mu$ F Load, 12-V Switch

Figure 17. xVPP Propagation Delay and Rise Time With $150-\mu$ F Load, 12-V Switch

Figure 16. xVPP Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 12-V Switch

Figure 18. xVPP Propagation Delay and Fall Time With $150-\mu$ F Load, 12-V Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
IDD	Supply current, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}$	vs Junction temperature	19
IDD	Supply current, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=0$	vs Junction temperature	20
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}$	vs Junction temperature	21
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=0$	vs Junction temperature	22
rDS(on)	Static drain-source on-state resistance, 5-V switch	vs Junction temperature	23
rDS(on)	Static drain-source on-state resistance, 12-V switch	vs Junction temperature	24
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$	Output voltage, 5-V switch	vs Output current	25
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$	Output voltage, 3.3-V switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	vs Output current	26
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$	Output voltage, 3.3-V switch, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=0$	vs Output current	27
V_{O} (xVPP)	Output voltage, 12-V switch	vs Output current	28
$\mathrm{IOS}(\mathrm{xVCC})$	Short-circuit current, 5-V switch	vs Junction temperature	29
$\mathrm{IOS}(\mathrm{xVCC})$	Short-circuit current, 3.3-V switch	vs Junction temperature	30
IOS(xVPP)	Short-circuit current, 12-V switch	vs Junction temperature	31

Figure 19

SUPPLY CURRENT
VS
JUNCTION TEMPERATURE

Figure 20

TYPICAL CHARACTERISTICS

3.3-V SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 21

Figure 23
3.3-V SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE
vs

Figure 22

12-V SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 24

TYPICAL CHARACTERISTICS

Figure 25

Figure 27

Figure 26

Figure 28

TYPICAL CHARACTERISTICS

Figure 29
3.3-V SWITCH

SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 30

12-V SWITCH
SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 31

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the plug-and-play concept. Cards and hosts from different vendors should be compatible-able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output-voltage regulation $\left(\mathrm{V}_{\mathrm{O}(\mathrm{reg})}\right)$ of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply has an output-voltage regulation ($\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses ($\mathrm{V}_{\mathrm{PCB}}$) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2206 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
\begin{equation*}
V_{D S}=V_{\mathrm{O}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PS}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PCB}} \tag{1}
\end{equation*}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2206. The voltage drop is the output current multiplied by the switch resistance of the TPS2206. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2206 divided by the output switch resistance.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{O}} \max =\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{r}_{\mathrm{DS}}(\mathrm{on})} \tag{2}
\end{equation*}
$$

The xVCC outputs have been designed to deliver 700 mA at 5 V within regulation over the operating temperature range. Current proposals for the PCMCIA specifications are to limit the power dissipated in the PCMCIA slot to 3 W . With an input voltage of $5 \mathrm{~V}, 700 \mathrm{~mA}$ continuous is the maximum current that can be delivered to the PC Card. The TPS2206 is capable of delivering up to 1 A continuously, but during worst-case conditions the output may not be within regulation. This is generally acceptable because the majority of PC Cards require less than 700 mA continuous. Some cards require higher peak currents (disk drives during initial platter spin-up), but it is generally acceptable for small voltage sags to occur during these peak currents.
The xVCC outputs have been designed to deliver 1 A continuously at 3.3 V within regulation over the operating temperature range. The PCMCIA specification for output voltage regulation of the $3.3-\mathrm{V}$ output is 300 mV . Using the voltage drop percentages (2%) for power supply regulation and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV .
The xVPP outputs have been designed to deliver 150 mA continuously at 12 V .

APPLICATION INFORMATION

overcurrent and overtemperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB-trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.
The TPS2206 takes a two-pronged approach to overcurrent protection. First, instead of fuses, sense FETs monitor each of the power outputs. Excessive current generates an error signal that linearly limits the output current, preventing host damage or failure. Sense FETs, unlike sense resistors or polyfuses, have an added advantage in that they do not add to the series resistance of the switch and thus produce no additional voltage losses. Second, when an overcurrent condition is detected, the TPS2206 asserts a signal at $\overline{\mathrm{OC}}$ that can be monitored by the microprocessor to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down all power outputs until the device cools to within a safe operating region.

12-V supply not required

Most PC Card switches use the externally supplied $12-\mathrm{V} \mathrm{V}_{\text {pp }}$ power for switch-gate drive and other chip functions, which requires that power be present at all times. The TPS2206 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ or $3.3-\mathrm{V}$ input; therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the $12-\mathrm{V}$ input if the $12-\mathrm{V}$ input is not used. Additional power savings are realized by the TPS2206 during a software shutdown in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

backward compatibility and 3.3-V low-voltage mode

The TPS2206 is backward compatible with the TPS2202 AND TPS2202A products, with the following considerations. Pin 25 ($V_{D D}$ on TPS2202/TPS2202A) is a no connect because bias current is derived from either the 3.3-V input pin or the 5-V input pin. Also, the TPS2206 does not have the APWR_GOOD or BPWR_GOOD VPP reporting outputs. These are left as no connects.
The TPS2206 operates in 3.3-V low-voltage mode when 3.3 volts is the only available input voltage $\left(\mathrm{V}_{1(5 \mathrm{~V})}=0\right)$. This allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes or pager modes. Note that in this operation mode, the TPS2206 derives its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card. The $3.3-\mathrm{V}$ switch resistance increases, but the added switch resistance should not be critical, because only a small amount of current is delivered in this mode. If 6% (198 mV) is allowed for the $3.3-\mathrm{V}$ switch voltage drop, a $500-\mathrm{m} \Omega$ switch could deliver over 350 mA to the PC Card.

voltage transitioning requirement

PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2206 is designed to meet all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on $3.3-\mathrm{V}$-compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge and functions as a power reset. The TPS2206 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications, to fully discharge the card capacitors while switching between V_{CC} voltages.

APPLICATION INFORMATION

output ground switches

Several PCMCIA power-distribution switches on the market do not have an active-grounding FET switch. These devices do not meet the PC Card specification requiring a discharge of V_{CC} within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. A method commonly shown to alleviate this problem is to add to the switch output an external $100-\mathrm{k} \Omega$ resistor in parallel with the PC Card. Considering that this is the only discharge path to ground, a timing analysis shows that the RC time constant delays the required discharge time to more than 2 seconds. The only way to ensure timing compatibility with PC Card standards is to use a power-distribution switch that has an internal ground switch, like that of the TPS22xx family, or add an external ground FET to each of the output lines with the control logic necessary to select it.
In summary, the TPS2206 is a complete single-chip dual-slot PC Card power interface. It meets all currently defined PCMCIA specifications for power delivery in $5-\mathrm{V}, 3.3-\mathrm{V}$, and mixed systems, and offers a serial control interface. The TPS2206 offers functionality, power savings, overcurrent and thermal protection, and fault reporting in one 30 -pin SSOP surface-mount package for maximum value added to new portable designs.

power-supply considerations

The TPS2206 has multiple pins for each of its $3.3-\mathrm{V}, 5-\mathrm{V}$, and $12-\mathrm{V}$ power inputs and for the switched V_{CC} outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. Both $12-\mathrm{V}$ inputs must be connected for proper V_{pp} switching; it is recommended that all input and output power pins be paralleled for optimum operation.
Although the TPS2206 is fairly immune to power input fluctuations and noise, it is generally considered good design practice to bypass power supplies typically with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched V_{CC} and V_{pp} outputs be bypassed with a $0.1-\mu \mathrm{F}$ or larger capacitor; doing so improves the immunity of the TPS2206 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2206 and the load. High switching currents can produce large negative-voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similary, no pin should be taken below -0.3 V.

RESET or RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying a low impedance to the V_{Cc} and V_{pp} terminals. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The RESET or RESET input closes internal switches S1, S4, S7, and S10 with all other switches left open (see TPS2206 control-logic table). The TPS2206 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. RESET or RESET is provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The unused pin is internally pulled up or down and should be left unconnected.

APPLICATION INFORMATION

overcurrent and thermal protection

The TPS2206 uses sense FETs to check for overcurrent conditions in each of the V_{cc} and V_{pp} outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore, voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{\mathrm{OC}}$ indicator, normally a logic high, is a logic low when any overcurrent condition is detected, providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2206 controls the rise time of the V_{CC} and V_{pp} outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2206 engages. If the V_{CC} or V_{pp} outputs are driven below ground, the TPS2206 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the V_{CC} outputs is designed to activate, if powered up, into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The $\mathrm{V}_{\text {pp }}$ outputs limit from 120 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

Thermal limiting prevents destruction of the IC from overheating if the package power-dissipation ratings are exceeded. Thermal limiting disables all power outputs (both A and B slots) until the device has cooled.

calculating junction temperature

The switch resistance, $r_{D S(o n)}$, is dependent on the junction temperature, T_{J}, of the die. The junction temperature is dependent on both $r_{\mathrm{DS}}(\mathrm{on})$ and the current through the switch. To calculate T_{J}, first find r_{DS} (on) from Figures $21,22,23$, and 24 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
\begin{equation*}
P_{D}=r_{D S(o n)} \times 1^{2} \tag{3}
\end{equation*}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\left(\Sigma \mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}, \mathrm{R}_{\theta \mathrm{JA}}=108 \mathrm{E} / \mathrm{W} \tag{4}
\end{equation*}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic input and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive leading edge of the clock (see Figure 2). The 9-bit (D0 through D8) serial data word is loaded during the positive edge of the latch signal. The latch signal should occur before the next positive leading edge of the clock.
The shutdown bit of the data word places all V_{CC} and V_{pp} outputs in a high-impedance state and reduces chip quiescent current to $1 \mu \mathrm{~A}$ to conserve battery power.
The TPS2206 serial interface is designed to be compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.

An overcurrent output ($\overline{\mathrm{OC}}$) is provided to indicate an overcurrent condition in any of the V_{Cc} or V_{pp} outputs as previously discussed.

APPLICATION INFORMATION

NOTE A: MOSFET switches S9 and S12 have a back-gate diode from the source to the drain. Unused switch inputs should never be grounded.
Figure 32. Internal Switching Matrix

APPLICATION INFORMATION

TPS2206 control logic

AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D0 A_VPP_PGM	D1 A_VPP_VCC	S7	S8	S9	VAVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	VCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPP $(12 \mathrm{~V})$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 $\overline{\text { SHDN }}$	D4 B_VPP_PGM	D5 B_VPP_VCC	S10	S11	S12	VBVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	VCC \ddagger
1	1	0	OPEN	OPEN	CLOSED	VPP $(12 \mathrm{~V})$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

AVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 $\overline{\text { SHDN }}$	D3 $\overline{\text { A_VCC3 }}$	D2 $\overline{\text { A_VCC5 }}$	S1	S2	S3	VAVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 $\overline{\mathbf{S H D N}}$	D6 $\overline{\mathbf{B} _V C C 3}$	D7 $\overline{\mathbf{B} _V C C 5}$	S4	S5	S6	VBVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

\dagger Output depends on AVCC
\ddagger Output depends on BVCC

ESD protection

All TPS2206 inputs and outputs incorporate ESD-protection circuitry designed to withstand a $2-\mathrm{kV}$ human-body-model discharge as defined in MIL-STD-883C, Method 3015. The V_{CC} and V_{pp} outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

APPLICATION INFORMATION

Figure 33. Detailed Interconnections and Capacitor Recommendations

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V . The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in 2 of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A $1.22-\mathrm{V}$ reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A: The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.
Figure 34. TPS2206 with TPS6734 12-V, 120-mA Supply

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
TPS2206IDAP	ACTIVE	HTSSOP	DAP	32	46	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
TPS2206IDAPG4	ACTIVE	HTSSOP	DAP	32	46	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
TPS2206IDAPR	ACTIVE	HTSSOP	DAP	32	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR
TPS2206IDAPRG4	ACTIVE	HTSSOP	DAP	32	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
TPS2206IDB	ACTIVE	SSOP	DB	30	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TPS2206IDBG4	ACTIVE	SSOP	DB	30	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TPS2206IDBLE	OBSOLETE	SSOP	DB	30		TBD	Call TI	Call TI
TPS2206IDBR	ACTIVE	SSOP	DB	30	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TPS2206IDBRG4	ACTIVE	SSOP	DB	30	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TPS2206IDF	OBSOLETE	SSOP	DF	30		TBD	Call TI	Call TI
TPS2206IDFLE	OBSOLETE	SSOP	DF	30		TBD	Call TI	Call TI
TPS2206IDFR	ACTIVE	SSOP	DF	30	1000	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL BOX INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package	Pins	Site	Reel Diameter $(\mathbf{m m})$	Reel Width $(\mathbf{m m})$	$\mathbf{A 0}(\mathbf{m m})$	$\mathbf{B 0}(\mathbf{m m})$	$\mathbf{K 0}(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TPS2206IDAPR	DAP	32	SITE 60	330	24	8.6	11.5	1.6	12	24	Q1
TPS2206IDBR	DB	30	SITE 41	330	16	8.2	10.5	2.5	12	16	Q1
TPS2206IDFR	DF	30	SITE 32	330	24	10.8	13.2	3.25	16	24	Q1

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
TPS2206IDAPR	DAP	32	SITE 60	367.0	367.0	45.0
TPS2206IDBR	DB	30	SITE 41	346.0	346.0	33.0
TPS2206IDFR	DF	30	SITE 32	346.0	346.0	41.0

DAP (R-PDSO-G**) PowerPAD ${ }^{\text {TM }}$ PLASTIC SMALL-OUTLINE PACKAGE

4073257/C 11/05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

INSTRUMENTS www.ti.com

THERMAL PAD MECHANICAL DATA DAP (R-PDSO-G32)

THERMAL INFORMATION

This PowerPAD ${ }^{T M}$ package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View
NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, Tl will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	aataconverter.ti.com
DSP	asp.ti.com
Interface	nterface.ti.com
Logic	ogic.ti.com
Power Mgmt	ower.ti.com
Microcontrollers	microcontroller.ti.com
RFID	WWW.ti-rfid.com
Low Power	WWw.ti.com/pw
Wireless	

Applications
Audio
Automotive
Broadband
Digital Control
Military
Optical Networking
Security
Telephony
Video \& Imaging
Wireless Nww.ti.com/wireless
www.ti.com/audio
WWw.ti.com/automotive
WWw.ti.com/broadband www.ti.com/digitalcontro www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security Www.ti.com/telephony Www.ti.com/vided

Nww.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

